
ATL

TRANSFORMATION EXAMPLE

JavaSource to Table

Date 11/03/2005

__

 Page 1/10

1. ATL Transformation Example

1.1. Example: JavaSource ���� Table

The JavaSource to Table example describes a transformation from a Java source code to a table
which summarizes how many times each method declared in the Java source code is called within the
definition of any declared method. A XML-based format, inspired from the JavaML [1], has been
developed to encode all interesting information available in the Java source code. We use, for this
transformation, a very basic abstract Table model which may be easily mapped to existing table
representations (XHTML, ExcelML, etc.).

1.1.1. Transformation overview

The aim of this transformation is to generate, from a Java source code (that is, the declaration of
several Java classes), a Table document which summarizes how many times each method is called
within the definition of the declared methods. The generated table is organized as follows:

- Except the first cell, which is empty, the first row contains the list of the methods declared
in the input Java source code, sorted according to the “class_name.method_name” string,
where “method_name” is the name of a method, and “class_name” the name of the class
in which the method is defined.

- The first column is organized in the same way as the first row is.

- Cells of following rows contain the number of calls of the in-column method within the in-
row method declaration.

FirstClass.java SecondClasss.java

public class FirstClass {
 public void fc_m1(){
 }
 public void fc_m2(){
 this.fc_m1();
 this.fc_m1();
 }
}

public class SecondClass {
 public void sc_m1(){
 FirstClass a = new FirstClass();
 a.fc_m1();
 }
 public void sc_m2(){
 this.sc_m1();
 }
}

Table 1. Java source example

As an example of the JavaSource to Table transformation, Figure 1 provides the XHTML table
corresponding to a Java source code composed of the two classes (“FirstClass” and “SecondClass”)
defined in Table 1. All defined methods appear both in rows and columns, sorted by their class, and
their name. The table has to be read as follows: the method “FirstClass.fc_m2” (row 3) is called twice
in the definition of “FirstClass.fc_m1” (column 2), but not in the other method definitions.

Prior to the transformation, the Java source code is injected into an XML model that encodes the
information required for the transformation. The developed injector is described in the next section.

ATL

TRANSFORMATION EXAMPLE

JavaSource to Table

Date 11/03/2005

__

 Page 2/10

Figure 1. Method invocations summary for FirstClass and SecondClass

1.1.2. From Java source code to the JavaSource XML

An injector has been developed to inject Java source code into an XML-based JavaSource model.
This model is designed so that it only includes information that is relevant for the JavaSource to Table
transformation: the name of declared classes, the name of defined methods (for each class
declaration), the name and the class of invoked methods (for each defined method). A simple DTD for
this XML model is provided in Appendix III.

Each Java class is defined in a distinct file. The injector accepts several “.java” files as input, and
produces a single file that contains the XML-based representation of the Java source code in input.
Table 2 describes the XML file generated from the FirstClass and SecondClass classes described in
Table 1.

<javasource>

 <class-declaration>
 <name>FirstClass</name>
 <method-definition>
 <name>fc_m1</name>
 </method-definition>
 <method-definition>
 <name>fc_m2</name>
 <method-invocation>
 <class>FirstClass</class>
 <name>fc_m1</name>
 </method-invocation>
 <method-invocation>
 <class>FirstClass</class>
 <name>fc_m1</name>
 </method-invocation>
 </method-definition>
 </class-declaration>

 <class-declaration>
 <name>SecondClass</name>
 <method-definition>
 <name>sc_m1</name>
 <method-invocation>
 <class>FirstClass</class>
 <name>fc_m1</name>
 </method-invocation>
 </method-definition>
 <method-definition>
 <name>sc_m2</name>
 <method-invocation>
 <class>SecondClass</class>
 <name>sc_m1</name>
 </method-invocation>
 </method-definition>
 </class-declaration>

</javasource>

Table 2. JavaSource XML representation

ATL

TRANSFORMATION EXAMPLE

JavaSource to Table

Date 11/03/2005

__

 Page 3/10

1.2. Metamodels

This transformation is based on a basic JavaSource metamodel which only deals with information that
is relevant in the scope of this transformation. The considered metamodel is presented in Figure 2,
and provided, in km3 format [2], in Appendix I.

JavaSource

+name

NamedElement

ClassDeclaration

MethodDefinition MethodInvocation

1

+classes*

0..1 +invocations *

+class0..1

+methods*

1

+method

*

Figure 2. The JavaSource metamodel

Java sources are modelized by a JavaSource element. This element is composed of
ClassDeclarations. Each ClassDeclaration is composed of MethodDefinitions. Both ClassDeclaration
and MethodDefinition inherit from the abstract NamedElement class (which provides a name). A
MethodDefinition is composed of MethodInvocations (a call to a method). Each MethodInvocation is, in
its turn, associated with a one and only MethodDeclaration (the called method).

ATL

TRANSFORMATION EXAMPLE

JavaSource to Table

Date 11/03/2005

__

 Page 4/10

The transformation also relies on an abstract Table definition. The metamodel considered here is
described in Figure 3, and provided in Appendix II in km3 format.

Table

Row

+content

Cell

1

+rows*

1

+cells

*

Figure 3. The Table metamodel

Within this metamodel, a Table is associated with a Table element. Such an element is composed of
several Rows that, in their turn, are composed of several Cells.

1.3. Rules Specification

These are the rules to transform a JavaSource model to a Table model:

• For the root JavaSource element, the following elements are created:

o A Table element which is composed of a sequence of rows;

o A Row element, linked to the Table element, which corresponds to the first row of the
Table. This element is composed of the following sequence of elements

� An empty Cell, linked to the Row element, which is the first cell of the first
row.

� One Cell, linked to the Row element, for each MethodDefinition. The content
of the Cell is equal to the “class_name.method_name” string. Within the
sequence, Cells are ordered according to their content.

• For each MethodDefinition, the following elements are created:

o A Row linked to the Table element. This element is composed of the following
sequence of elements:

� A title Cell, linked to the current Row element. Its content is equal to the
“class_name.method_name” string, where “class_name” is the name of the
class associated with the current MethodDefinition, and “method_name” is the
name of the current MethodDefinition.

� One Cell, linked to the current Row element, for each MethodDefinition. The
content of this Cell corresponds to the number of calls of the in-column
method within the definition of the current in-row method.

ATL

TRANSFORMATION EXAMPLE

JavaSource to Table

Date 11/03/2005

__

 Page 5/10

1.4. ATL Code

This ATL code for the JavaSource to Table transformation consists of 2 helpers and 2 rules. Among
helpers, allMethodDefs computes the set of all MethodDefinitions, ordered according to: 1) their class
name, and 2) their method name.

The computeContent helper returns the number of calls of an in-column MethodDefinition (provided as
a parameter) within the current MethodDefinition. For this purpose, it selects, among
MethodInvocations within the definition, those that have the same class and method names that the
MethodDefinition parameter. The rule then returns the size of the built set.

The rule Main allocates the structure of the Table model: the Table element (“t”) and the first Row of
this table (“first_row”). This row is composed of a first empty cell (“first_col”), and the cells associated
with the declared methods (“title_cols”). This rule makes use of the “thisModule.resolveTemp(e, str)”
method (line 50). This method makes it possible to handle the output elements generated in the ‘row’
output of rule MethodDefinition. The use of the “distinct … foreach(…)” command (line 62) makes it
possible, within a single rule, to generate a distinct Cell for each element of the allMethodDefs
sequence.

The rule MethodDefinition allocates a new Row for each declared MethodDefinition. The rule creates a
Row element (“row”) which is composed of a first Cell element (“title_cel”) and the data Cells
associated with each declared method (“cels”). The content of the sequence of data cells is computed
by calling the computeContent helper for each element of the allMethodDefs ordered set.

module JavaSource2Table; 1
create OUT : Table from IN : JavaSource; 2
 3
 4
--- ---------------------------- 5
-- HELPERS -- ---------------------------- 6
--- ---------------------------- 7
 8
-- This helper builds the sequence of all method de finitions in all existing 9
-- classes. 10
-- Built sequence is ordered according to the coupl e (class_name, method_name). 11
-- RETURN: Sequence(JavaSource!MethodDefinition) 12
helper def: allMethodDefs : Sequence (JavaSource!MethodDefinition) = 13
 JavaSource!MethodDefinition.allInstances() 14
 ->sortedBy(e | e.class.name + '_' + e.name); 15
 16
-- This helper builds the content of the table cell associated with the context 17
-- MethodDefinition (row) and the input MethodDefin ition (column). 18
-- The computed value corresponds to the number of calls of the second method 19
-- within the first method definition. 20
-- CONTEXT: JavaSource!MethodDefinition 21
-- IN: JavaSource!MethodDefinition 22
-- RETURN: String 23
helper context JavaSource!MethodDefinition 24
 def : computeContent(col : JavaSource!MethodDefinition) : String = 25
 self.invocations 26
 ->select(i | i.method.name = col.name and 27
 i.method.class.name = col.class.name) 28
 ->size(); 29
 30
 31
--- ---------------------------- 32
-- RULES -- ---------------------------- 33
--- ---------------------------- 34
 35

ATL

TRANSFORMATION EXAMPLE

JavaSource to Table

Date 11/03/2005

__

 Page 6/10

-- Rule 'Main' 36
-- This rule generates the Table as well as its fir st row. 37
-- First row cells contain the different defined me thod, in the format 38
-- 'class_name.method_name', ordered by the value o f the build string. 39
rule Main { 40
 from 41
 s : JavaSource!JavaSource 42
 43
 to 44
 -- Table is composed of the first row + data rows 45
 t : Table!Table (46
 rows <- 47
 Sequence {first_row, 48
 thisModule.allMethodDefs 49
 ->collect(e | thisModule.resolveTemp(e, 'row')) 50
 } 51
), 52
 -- First row is composed of the first column + titl e columns 53
 first_row : Table!Row (54
 cells <- Sequence {first_col, title_cols} 55
), 56
 -- First column empty 57
 first_col : Table!Cell (58
 content <- '' 59
), 60
 -- Title cols = 'class_name.method_name' 61
 title_cols : distinct Table!Cell foreach(mDef in thisModule.allMethodDefs)(62
 content <- mDef.class.name + '.' + mDef.name 63
) 64
} 65
 66
-- Rule 'MethodDefinition' 67
-- This rule generates the content of the table, in cluding the first cell of 68
-- each row, which identifies a method (format 'cla ss_name.method_name'). 69
rule MethodDefinition { 70
 from 71
 m : JavaSource!MethodDefinition 72
 73
 to 74
 -- Rows are composed of the first (title) cell + da ta cells 75
 row : Table!Row (76
 cells <- Sequence {title_cel, cels} 77
), 78
 -- Title cell = 'class_name.method_name' 79
 title_cel : Table!Cell (80
 content <- m.class.name + '.' + m.name 81
), 82
 -- Data cells = nb of calls of each method within a method definition 83
 cels : distinct Table!Cell foreach(mDef in thisModule.allMethodDefs)(84
 content <- m.computeContent(mDef).toString() 85
) 86
} 87

ATL

TRANSFORMATION EXAMPLE

JavaSource to Table

Date 11/03/2005

__

 Page 7/10

I. JavaSource metamodel in km3 format

package JavaSource {

 class JavaSource {
 reference classes[1-*] container : ClassDeclarati on;
 }

 abstract class NamedElement {
 attribute name : String;
 }

 class ClassDeclaration extends NamedElement {
 reference superclass[0-1] : ClassDeclaration;
 reference methods[*] container : MethodDefinition oppositeOf "class";
 }

 class MethodDefinition extends NamedElement {
 reference "class"[1-1] : ClassDeclaration opposit eOf methods;
 reference invocations[*] container : MethodInvoca tion;
 }

 class MethodInvocation {
 reference method[1-1] : MethodDefinition;
 }
}

package PrimitiveTypes {
 datatype String;
}

ATL

TRANSFORMATION EXAMPLE

JavaSource to Table

Date 11/03/2005

__

 Page 8/10

II. Table metamodel in km3 format

package Table {

 class Table {
 reference rows[1-*] ordered container : Row;
 }

 class Row {
 reference cells[1-*] ordered container : Cell;
 }

 class Cell {
 attribute content : String;
 }
}

package PrimitiveTypes {
 datatype String;
}

ATL

TRANSFORMATION EXAMPLE

JavaSource to Table

Date 11/03/2005

__

 Page 9/10

III. XML-based Javasource DTD

<!DOCTYPE JavaSource [

 <ELEMENT java-source (class-declaration+)>
 <ELEMENT class-declaration (name, method-definitio n*)>
 <ELEMENT method-definition (name, method-invocatio n*)>
 <ELEMENT method-invocation (class, name)>
 <ELEMENT name (#PCDATA)>
 <ELEMENT class (#PCDATA)>

]>

ATL

TRANSFORMATION EXAMPLE

JavaSource to Table

Date 11/03/2005

__

 Page 10/10

References

[1] JavaML: A Markup Language for Java Source, Greg J. Baros,

http://www.cs.washington.edu/research/constraints/web/badros-javaml-www9/.

[2] KM3: Kernel MetaMetaModel. Available at http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt-

home/doc/atl/index.html.

